Mass-to-charge ratio

Beam of electrons moving in a circle in a Teltron tube, due to the presence of a magnetic field. Purple light is emitted along the electron path, due to the electrons colliding with gas molecules in the bulb. Mass-to-charge ratio of the electron can be measured in this apparatus by comparing the radius of the purple circle, the strength of the magnetic field, and the voltage on the electron gun. The mass and charge cannot be separately measured this way—only their ratio.
Mass-to-charge ratio
Common symbols
m/Q
SI unitkg/C
In SI base unitskgA−1s−1
Dimension

The mass-to-charge ratio (m/Q) is a physical quantity relating the mass (quantity of matter) and the electric charge of a given particle, expressed in units of kilograms per coulomb (kg/C). It is most widely used in the electrodynamics of charged particles, e.g. in electron optics and ion optics.

It appears in the scientific fields of electron microscopy, cathode ray tubes, accelerator physics, nuclear physics, Auger electron spectroscopy, cosmology and mass spectrometry.[1] The importance of the mass-to-charge ratio, according to classical electrodynamics, is that two particles with the same mass-to-charge ratio move in the same path in a vacuum, when subjected to the same electric and magnetic fields.

Some disciplines use the charge-to-mass ratio (Q/m) instead, which is the multiplicative inverse of the mass-to-charge ratio. The CODATA recommended value for an electron is Q/m = −1.75882000838(55)×1011 C⋅kg−1.[2]

  1. ^ IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) "mass-to-charge ratio, m/z in mass spectrometry". doi:10.1351/goldbook.M03752
  2. ^ "2022 CODATA Value: electron charge to mass quotient". The NIST Reference on Constants, Units, and Uncertainty. NIST. May 2024. Retrieved 2024-05-18.

Developed by StudentB